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Consideration is given to a tray liquid in the intermediate state between ideal displacement and total 
mixing, for which pulpose the degree of  attahffng the latter state by the liquid is introduced. The com- 
position of the vapor after leaving an ideal tray is assumed to be in equilibrium with that of  the liquid 
in its intermediate state. Foul" variants of  interrelation of  the real and ideal trays are considered; the 

efficiencies for the vapor and the liquid are proved to be equal for each of  them. Ratios for the effi- 
ciencies of all the variants are obtained. A comparison is made of the efficiency ratios as functions of  
liquid mixing. 

Mixing of a tray liquid exerts a pronounced effect on the efficiency of mass transfer. In the literature, 
borderline states, namely, total mixing of a tray liquid and its ideal displacement, are described in detail. In the 
first case, the composition of the tray liquid is the same everywhere on the tray and is equal to the composition 
of the liquid leaving the tray (Fig. la). For an ideal tray, a vapor is in equilibrium with a liquid of this com- 
position: 

* * (1) (vn) m = D L V n _  1 • 

In the second case, liquid mixing is absent and its composition gradually changes from the initial to 
the final concentration. The vapor also becomes gradually enriched with a highly volatile component and on 
leaving the tray it is in equilibrium, in the case of countercurrent motion of phases, with an oncoming liquid 
(Fig. lb): 

(Y,,)r = nUt',,. (2) 

In practice, most often there occurs a certain intermediate state, which is characterized by partial mix- 
ing of a liquid. It can be represented by models in which the degree of mixing is determined as a function of 
a number of design and technological factors [1, 2]. In the cellular model, the degree of liquid mixing is al- 
lowed for by the number of total-mixing cells with ideal displacement of the liquid between the cells. In the 
circulation model, it is assumed that some amount of a running-down liquid returns to the tray entry. In the 
diffusional model, the degree of liquid mixing is characterized by a dimensionless Peclet number. 

Let us assume that some amount of a tray liquid is totally mixed and its other part moves in the re- 
gime of ideal displacement. We assign q~ of the totally mixed liquid on the ideal tray, which is characterized 
by equilibrium condition (1). Then the amount of the unmixed liquid, for which expression (2) holds, is 
1 - % In total mixing of the entire liquid, q~ = 1; in its ideal displacement, q~ = 0. In this case, the composition 
of the vapor after leaving the ideal tray can be represented as a function of the amount of the mixed liquid by 
the formula 
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Fig. 1. Mass transfer schemes: a) total mixing; b) ideal displacement. 

y,, = cp ( Y n ) m  + ( 1  - q ) )  (Y , , ) r  = (pmxn-I + ( l  - +Q) mA" n . 
(3) 

An analysis of the interrelation of the real and ideal trays reveals that four variants are possible [3]. 
The conditions common for all of them are constancy of the molar vapor and liquid flows across both trays 
and equality of heat transfer between both trays and the surrounding medium. 

In the first variant, the compositions of the oncoming vapor flows and the leaving liquid flow coincide 
for the ideal and real trays, which is characteristic of the Murphree model in analyzing the efficiency in the 
vapor phase [4, 5]: 

(-vn-01 =Y,-I ; (xn-01 =an- , ,  

and the equations of material balance for the real and ideal trays can be written, respectively, in the form 

L (x,, - X ; , _ I )  = V (y , ,  - -  Y,,-1), (4) 

L [ (X t , ) I  - -  Nit_l] = V [Qv,1) 1 - Y,-I] " ( 5 )  

In this case, the tray efficiency for the vapor and liquid phases can be represented by the corresponding rela- 
tions 

Y,, - Y,,-I (6) 
EI~p'v - -  (Y,,)l - Y,,-I 

Xn - -  X n -  1 

E1cp,l i  q - (X~)  1 - -  Xn_ 1 
(7) 

Equilibrium condition (3) for the first variant acquires the form 

(Yn)t = ~pmXn-1 + (1 - Cp) m (X*)l  . 
(8) 

On solving simultaneously expressions (4)-(6) and (8) as well as (4), (5), (7), and (8), we can arrive at 
the equation 

El tp ,v lXn- l -~ '~ )  EIcp,liq(Xn-l-~--~) 

Xn -- Xn-1 = L - L 
m V -  1 +cp m V -  1 + 9  

(9) 
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from which the equality of the efficiences in the vapor and liquid phases follows; this allows us to write 

Y n - Y n - I  x n - x n - I  (10) 
EI~ = El~'v = El~'liq- (Y*)I-Yn-I (x,,)l - x n - I  

Unlike the aforesaid, in the second variant [3] for the ideal and real trays the compositions of the leav- 
ing vapor flows and the oncoming liquid flows coincide. This interrelation exists in the Murphree model in 
analyzing the efficiency in the liquid [4, 5] and is specified by the expressions 

( Y . ) 2  = v ,1 ,  . ( x n ) ~  = x n • 

In accordance with the specific features mentioned, the equation of material balance of the ideal tray 
has the form 

L [x, ,-  (3, ' ;_1)2] = V [Yn - (Y~-1)2], (11) 

while for a real tray, it has the form of (4). The tray efficiency for the considered variant in the vapor and 
liquid phases can be represented by the corresponding relations 

Y n - Y . - I  (12) 
E2cp, v - , , 

Y,, - (Vn-1 ) 2 

x,, - x,,_ 1 (13) 
E 2 * ' l i "  - x , ,  - (:'*,-~)2' 

while condition (3) can be described by the equation 

y, ,  = ~ m  ( x ~ _ l )  2 + (1  - cO) m r , , .  (14) 

Solving simultaneously expressions (4), (11), (12), and (14), on the one hand, and (4), (11), (13), and 
(14), on the other hand, allows us to obtain the relation 

n- I  rn  _ E2tp,liq n - I  m ) ( 1 5 )  

X n - -  X n _  l = 

which shows the equality of the efficiencies in the vapor and liquid phases for the second variant, i.e., 

Y,1 - Y n - 1  Xn  - -  X n - I  
E2~ p = E2~p, v = E2cp,li q - • - • . (16) 

Yn - (Yn-1)2  Xn - ( X n - l ) 2  

A specific feature of the scheme of change in the concentrations considered in the third variant [3] is 
the equality of the compositions of the vapor and the liquid entering the ideal and real trays, which is charac- 
teristic of the Hausen model [5, 6]: 

(Yn-t)3 =Yn-I ; (xn)3 =Xn"  
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In this case, the equation of  material balance for the real tray is similar to (4), while for the ideal tray it can 
be represented in the form 

V* L [ x , -  (X~_l) 3] = V [(2 ,,)3 -Yn-l]  , (17) 

and the efficiency in the vapor and liquid phases is, respectively, 

Y,  - Y . - I  (18) 
E3tp'v -- (Yn)3 - Yn-1 

E3~p,liq _ xn - x"-I. (19) 

x ,  - (xn_03 

Formula (3) is specified for this variant by the expression 

(Y,])3 = t pm (X;_I) 3 + (1 -- tp) mx,,. (20) 

As a result of simultaneous solution of  expressions (4) and (17)-(20), we arrive at the relation 

X n -- Xn_ 1 = 

E 3 t p , v I X n - l - ~ l _ E 3 ( p , l i q l  X'-l-yn-IID' ) 

L L 
m V  E3'~'v + q~ m V  -- E3q°'liq + (p 

(21) 

from which the equality of  the tray efficiencies in the vapor and liquid phases follows for the third variant, i.e., 

Y. - Y.- 1 x,, - .~.._ 1 

E3q° = E3q°'v = E3qo'liq - (Y,])3 - Yn-I "v'n - ( x . - I ) 3  
(22) 

Mass transfer in the fourth variant [3] is characterized by the equality of  the compositions of  the vapor 
and liquid flows leaving the real and ideal trays: 

( -V i l )4=Yn ,  ( X n - l ) 4 = X n - I  " 

As in the previous variants for the real tray, formula (4) holds in this case. The equation of  material 
balance of  the ideal tray can be represented as follows: 

L [(Xn) 4 - - X n _ l ]  = V Lv n - (Yn- l )4 ]  • 
(23) 

In accordance with the assumptions made, the tray efficiency in the vapor and liquid phases can be 
represented, respectively, as 

Y,  - Y n - I  
E4~,v - • , (24) 

Y,,- (Yn-I)4 

X n -- Xn_ 1 

E4tp,li q - (Xn) 4 - Xn_ 1 
(25) 
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while equilibrium condition (3) can be represented as 

Yn = tpmx , , - I  + (1 - tp) m (X,~)4 . (26) 

A simultaneous solution of expressions (4) and (23)-(26) allows us to obtain the dependence 

IX" Yn-I 
E 4 ~ , v  n - I  m 

Xn - Xn-1 = t 

m W  E 4 9 , v  - 1 + tp 

 4,q/ l / 
L 

E4q0,1i q - 1 + q~ 

(27) 

which points to the equality of the efficiencies in the vapor and liquid phases in the tburth variant as well, i.e., 

Y,, - Y,,-1 x, ,  - xn_  I (28) 
E 4 t  p = E4tp, v = E4,p,li q - , - , 

Yn - CYn-1)4 (Xn)4 - -  X n - I  

The analysis performed shows that in each of the considered variants the efficiencies in the vapor 
phase are equal to those in the liquid phase. A comparison of the efficiencies reveals their coincidence for 
individual variants. In particular, the efficiency expressions (6) and (18) and (12) and (24) for the vapor phase 
and (7) and (25) and (13) and (19) for the liquid are identical. However, the efficiencies calculated by the 
above paired relations are not equal to each other in the general case, since they must be considered in com- 
bination with the corresponding equations of material balance and the equilibrium conditions of the vapor and 
liquid compositions, which are individual for each variant. However, in particular cases, with a certain ratio of  
the flows and concentrations the values of the mentioned groups of efficiencies can coincide. 

The left-hand sides of  formulas (9) (15), (21), and (27) display the same technological result, namely, 
the difference of the concentrations of the highly volatile component and the liquid that enters the real tray and 
leaves it. Equating the fight-hand sides of these expressions alternately with account for (10), (16), (22), and 
(28) makes it possible to obtain the following relations for the efficiencies of all the considered variants of 
mass transfer: 

L L 
m---V- 1 + (p L tp m V + g~ L 1 - tp 

1 + -  1 - -  ( 2 9 )  
EI~ mV E2~ p E3~ rnV E4g ) 

The relations obtained can be used to analyze and compare the considered variants of mass transfer in 
countercurrent motion of a vapor and a liquid on a tray. 

With total mixing of a tray liquid (g~ = 1), formulas (9), (15), (21), and (27) are transformed into the 
corresponding relations obtained for concurrent motion [7], but in the absence of mixing (q0 = 0) they are trans- 
formed into the formulas obtained for the countercurrent motion of the interacting phases [8]. Thus, the above 
variants can be represented as general models, while mass transfer with counter- and concurrent motion of the 
components as their boundary cases. 

Figures 2 and 3 show graphic representations of the interrelations of  the tray efficiencies with different 

mixing and L / m V  = 1.5. 
In the real range of efficiencies for various degrees of mixing, El~0 > E2~ (Fig. 2a). It should be noted 

that their difference decreases with increase in qo. The inverse ratio of the efficiencies occurs when their values 
are smaller than zero or larger than unity. 

As is seen from Fig. 2b, the real values of E3~0 are higher than EI~o. As in the previous case, an in- 
crease in the mixing entails a decrease in the difference of the efficiencies considered but does not equalize 
them even at qo = 1. In unreal regions of  efficiencies, when they are larger than unity or smaller than zero, 
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Fig. 2. Dependences of the efficiencies E2w (a) and E3e (b) on Ele and 
E3e on E2e (c) at L/mV = 1.5 and different mixing: 1) q3 = 0; 2) 0.2; 3) 
0.5; 4) 1.0. 
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Fig. 3. Efficiency E4, vs. E l ,  (a), E2~ (b), and E3,p (c) at L/mV = 1.5 and 
different mixing: 1-4) same as in Fig. 2. 

E3q0 < Elq0. A comparison of Fig. 2a and b reveals that the ratio of E]~ and E3~ depends on the degree of 
mixing to a lesser extent than for the pair of EK0 and E2~. 

The efficiency E3, is higher than E2q0 in the real range and lower at their unreal values (Fig. 2c). A 
comparison of curves a, b, and c in Fig. 2 shows that the mixing exerts an effect on the ratios of EK0 and 
E2~ and E2, and E3q 0 to a greater extent and on EI~ and E3, to a lesser extent. 

Figure 3 shows that the real values of one efficiency correspond to unreal values of the other. Here, it 
can be noted that the mixing effect on these relations is at its maximum at E l ,  > 1 and E4~ < 0 (Fig. 3a) when 
E4~ > 1 and E2, < 0 (Fig. 3b) and at its minimum at E4~ > 1 and E3, < 0 (Fig. 3c). Moreover, as a comparison 
of Figs. 2 and 3 reveals, the greater effect of ~p in the graphs of the latter case is, apparently, attributable to 
the greater sensitivity of the fourth model of mass transfer to mixing. 

The comparison made shows that mixing exerts a pronounced influence on the efficiency of mass 
transfer. The relations suggested can be used for interpretation of experimental and industrial data, in particular, 
in analyzing the mixing effect on the operation of rectification columns and in investigating the dependence of 
mixing on design and operational parameters. 

In calculation procedures, use can be made of all the considered variants; however, preference should 
be given to the first three variants since the fourth model can yield unreal values of efficiency. It should be 
borne in mind that the first two models are less sensitive to mixing and their use is less fruitful as compared 
to the third variant. 

N O T A T I O N  

E, tray efficiency; % degree of mixing; L, molar liquid flow; m, equilibrium coefficient; V, molar vapor 
flow; x, y, concentration of the highly volatile component in the liquid and vapor, respectively. Subscripts and 
superscripts: % parameter allowing for mixing; r, ideal displacement; liq, liquid phase; n, No. of the tray under 
consideration; n -  1, No. of the preceding tray in the direction of vapor motion; m, ideal mixing; v, vapor 
phase; *, equilibrium state; 1 - 4 ,  Nos. of the considered variants of change in the concentrations. 
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